Abstract:One of the key technologies for the success of Large Language Models (LLMs) is preference alignment. However, a notable side effect of preference alignment is poor calibration: while the pre-trained models are typically well-calibrated, LLMs tend to become poorly calibrated after alignment with human preferences. In this paper, we investigate why preference alignment affects calibration and how to address this issue. For the first question, we observe that the preference collapse issue in alignment undesirably generalizes to the calibration scenario, causing LLMs to exhibit overconfidence and poor calibration. To address this, we demonstrate the importance of fine-tuning with domain-specific knowledge to alleviate the overconfidence issue. To further analyze whether this affects the model's performance, we categorize models into two regimes: calibratable and non-calibratable, defined by bounds of Expected Calibration Error (ECE). In the calibratable regime, we propose a calibration-aware fine-tuning approach to achieve proper calibration without compromising LLMs' performance. However, as models are further fine-tuned for better performance, they enter the non-calibratable regime. For this case, we develop an EM-algorithm-based ECE regularization for the fine-tuning loss to maintain low calibration error. Extensive experiments validate the effectiveness of the proposed methods.
Abstract:Conditional decision generation with diffusion models has shown powerful competitiveness in reinforcement learning (RL). Recent studies reveal the relation between energy-function-guidance diffusion models and constrained RL problems. The main challenge lies in estimating the intermediate energy, which is intractable due to the log-expectation formulation during the generation process. To address this issue, we propose the Analytic Energy-guided Policy Optimization (AEPO). Specifically, we first provide a theoretical analysis and the closed-form solution of the intermediate guidance when the diffusion model obeys the conditional Gaussian transformation. Then, we analyze the posterior Gaussian distribution in the log-expectation formulation and obtain the target estimation of the log-expectation under mild assumptions. Finally, we train an intermediate energy neural network to approach the target estimation of log-expectation formulation. We apply our method in 30+ offline RL tasks to demonstrate the effectiveness of our method. Extensive experiments illustrate that our method surpasses numerous representative baselines in D4RL offline reinforcement learning benchmarks.
Abstract:Large language models (LLMs) have achieved impressive performance across various domains. However, the substantial hardware resources required for their training present a significant barrier to efficiency and scalability. To mitigate this challenge, low-precision training techniques have been widely adopted, leading to notable advancements in training efficiency. Despite these gains, low-precision training involves several components$\unicode{x2013}$such as weights, activations, and gradients$\unicode{x2013}$each of which can be represented in different numerical formats. The resulting diversity has created a fragmented landscape in low-precision training research, making it difficult for researchers to gain a unified overview of the field. This survey provides a comprehensive review of existing low-precision training methods. To systematically organize these approaches, we categorize them into three primary groups based on their underlying numerical formats, which is a key factor influencing hardware compatibility, computational efficiency, and ease of reference for readers. The categories are: (1) fixed-point and integer-based methods, (2) floating-point-based methods, and (3) customized format-based methods. Additionally, we discuss quantization-aware training approaches, which share key similarities with low-precision training during forward propagation. Finally, we highlight several promising research directions to advance this field. A collection of papers discussed in this survey is provided in https://github.com/Hao840/Awesome-Low-Precision-Training.
Abstract:Recently, long-thought reasoning models achieve strong performance on complex reasoning tasks, but often incur substantial inference overhead, making efficiency a critical concern. Our empirical analysis reveals that the benefit of using Long-CoT varies across problems: while some problems require elaborate reasoning, others show no improvement, or even degraded accuracy. This motivates adaptive reasoning strategies that tailor reasoning depth to the input. However, prior work primarily reduces redundancy within long reasoning paths, limiting exploration of more efficient strategies beyond the Long-CoT paradigm. To address this, we propose a novel two-stage framework for adaptive and efficient reasoning. First, we construct a hybrid reasoning model by merging long and short CoT models to enable diverse reasoning styles. Second, we apply bi-level preference training to guide the model to select suitable reasoning styles (group-level), and prefer concise and correct reasoning within each style group (instance-level). Experiments demonstrate that our method significantly reduces inference costs compared to other baseline approaches, while maintaining performance. Notably, on five mathematical datasets, the average length of reasoning is reduced by more than 50%, highlighting the potential of adaptive strategies to optimize reasoning efficiency in large language models. Our code is coming soon at https://github.com/StarDewXXX/AdaR1
Abstract:Selecting high-quality pre-training data for large language models (LLMs) is crucial for enhancing their overall performance under limited computation budget, improving both training and sample efficiency. Recent advancements in file selection primarily rely on using an existing or trained proxy model to assess the similarity of samples to a target domain, such as high quality sources BookCorpus and Wikipedia. However, upon revisiting these methods, the domain-similarity selection criteria demonstrates a diversity dilemma, i.e.dimensional collapse in the feature space, improving performance on the domain-related tasks but causing severe degradation on generic performance. To prevent collapse and enhance diversity, we propose a DiverSified File selection algorithm (DiSF), which selects the most decorrelated text files in the feature space. We approach this with a classical greedy algorithm to achieve more uniform eigenvalues in the feature covariance matrix of the selected texts, analyzing its approximation to the optimal solution under a formulation of $\gamma$-weakly submodular optimization problem. Empirically, we establish a benchmark and conduct extensive experiments on the TinyLlama architecture with models from 120M to 1.1B parameters. Evaluating across nine tasks from the Harness framework, DiSF demonstrates a significant improvement on overall performance. Specifically, DiSF saves 98.5% of 590M training files in SlimPajama, outperforming the full-data pre-training within a 50B training budget, and achieving about 1.5x training efficiency and 5x data efficiency.
Abstract:Large Language Models (LLMs) have shown promise in clinical decision support, yet their application to triage remains underexplored. We systematically investigate the capabilities of LLMs in emergency department triage through two key dimensions: (1) robustness to distribution shifts and missing data, and (2) counterfactual analysis of intersectional biases across sex and race. We assess multiple LLM-based approaches, ranging from continued pre-training to in-context learning, as well as machine learning approaches. Our results indicate that LLMs exhibit superior robustness, and we investigate the key factors contributing to the promising LLM-based approaches. Furthermore, in this setting, we identify gaps in LLM preferences that emerge in particular intersections of sex and race. LLMs generally exhibit sex-based differences, but they are most pronounced in certain racial groups. These findings suggest that LLMs encode demographic preferences that may emerge in specific clinical contexts or particular combinations of characteristics.
Abstract:Vertical federated learning (VFL) enables a paradigm for vertically partitioned data across clients to collaboratively train machine learning models. Feature selection (FS) plays a crucial role in Vertical Federated Learning (VFL) due to the unique nature that data are distributed across multiple clients. In VFL, different clients possess distinct subsets of features for overlapping data samples, making the process of identifying and selecting the most relevant features a complex yet essential task. Previous FS efforts have primarily revolved around intra-client feature selection, overlooking vital feature interaction across clients, leading to subpar model outcomes. We introduce ICAFS, a novel multi-stage ensemble approach for effective FS in VFL by considering inter-client interactions. By employing conditional feature synthesis alongside multiple learnable feature selectors, ICAFS facilitates ensemble FS over these selectors using synthetic embeddings. This method bypasses the limitations of private gradient sharing and allows for model training using real data with refined embeddings. Experiments on multiple real-world datasets demonstrate that ICAFS surpasses current state-of-the-art methods in prediction accuracy.
Abstract:In contrast to the human ability to continuously acquire knowledge, agents struggle with the stability-plasticity dilemma in deep reinforcement learning (DRL), which refers to the trade-off between retaining existing skills (stability) and learning new knowledge (plasticity). Current methods focus on balancing these two aspects at the network level, lacking sufficient differentiation and fine-grained control of individual neurons. To overcome this limitation, we propose Neuron-level Balance between Stability and Plasticity (NBSP) method, by taking inspiration from the observation that specific neurons are strongly relevant to task-relevant skills. Specifically, NBSP first (1) defines and identifies RL skill neurons that are crucial for knowledge retention through a goal-oriented method, and then (2) introduces a framework by employing gradient masking and experience replay techniques targeting these neurons to preserve the encoded existing skills while enabling adaptation to new tasks. Numerous experimental results on the Meta-World and Atari benchmarks demonstrate that NBSP significantly outperforms existing approaches in balancing stability and plasticity.
Abstract:Cropland non-agriculturalization refers to the conversion of arable land into non-agricultural uses such as forests, residential areas, and construction sites. This phenomenon not only directly leads to the loss of cropland resources but also poses systemic threats to food security and agricultural sustainability. Accurate identification of cropland and non-cropland areas is crucial for detecting and addressing this issue. Traditional CNNs employ static convolution layers, while dynamic convolution studies demonstrate that adaptively weighting multiple convolutional kernels through attention mechanisms can enhance accuracy. However, existing dynamic convolution methods relying on Global Average Pooling (GAP) for attention weight allocation suffer from information loss, limiting segmentation precision. This paper proposes Frequency-Aware Dynamic Convolution (FADConv) and a Frequency Attention (FAT) module to address these limitations. Building upon the foundational structure of dynamic convolution, we designed FADConv by integrating 2D Discrete Cosine Transform (2D DCT) to capture frequency domain features and fuse them. FAT module generates high-quality attention weights that replace the traditional GAP method,making the combination between dynamic convolution kernels more reasonable.Experiments on the GID and Hi-CNA datasets demonstrate that FADConv significantly improves segmentation accuracy with minimal computational overhead. For instance, ResNet18 with FADConv achieves 1.9% and 2.7% increases in F1-score and IoU for cropland segmentation on GID, with only 58.87M additional MAdds. Compared to other dynamic convolution approaches, FADConv exhibits superior performance in cropland segmentation tasks.
Abstract:High-resolution (HR) image perception remains a key challenge in multimodal large language models (MLLMs). To overcome the limitations of existing methods, this paper shifts away from prior dedicated heuristic approaches and revisits the most fundamental idea to HR perception by enhancing the long-context capability of MLLMs, driven by recent advances in long-context techniques like retrieval-augmented generation (RAG) for general LLMs. Towards this end, this paper presents the first study exploring the use of RAG to address HR perception challenges. Specifically, we propose Retrieval-Augmented Perception (RAP), a training-free framework that retrieves and fuses relevant image crops while preserving spatial context using the proposed Spatial-Awareness Layout. To accommodate different tasks, the proposed Retrieved-Exploration Search (RE-Search) dynamically selects the optimal number of crops based on model confidence and retrieval scores. Experimental results on HR benchmarks demonstrate the significant effectiveness of RAP, with LLaVA-v1.5-13B achieving a 43% improvement on $V^*$ Bench and 19% on HR-Bench.